https://4rdp.blogspot.com/2016/06/oeis-a274119.html?m=0
這篇寫給非數學專業的朋友參考,2016 端午好運接「粽」而來,這段時間我與網友們聯合申請幾個數列成功,在此除了以較淺顯易懂的方式介紹 OEIS
A274119 數列的故事,分享我們的喜樂之外,希望藉由這個故事,讓有志於數學研究的朋友參考,看能不能有更多有趣的數學新發現。
一切的故事從一題
2003 倍數開始,它是我小朋友學校所出的資優數學考題,題目是:
請問 (1 x 3 x 5 x ..... x 2001) + (2 x 4 x 6 x ..... x 2002) 是否為 2003 的倍數?
平時小朋友會分享學校有趣的題目,考驗看我會不會解,天啊,這題數目之大,一般計算機是算不出來的,還好我會用 Python 寫程式,可以驗算答案可以整除,但是個人並非數學系畢業,同時把這題目放在部落格上看有沒有精簡有效解法,那時沒有想到
modular arithmetic 可以輕易證明答案是整除的,這方法是網友 z423x5c6 所提供。
甚麼是 modular arithmetic?簡單說除法餘數可以加減乘除,看看幾個例子就懂,
5 / 11 = 0 ... 5
2 / 11 = 0 ... 2
(5 + 2) / 11 = 0 ... 7
(5 x 2) / 11 = 0 ... 10
(5 + 11) / 11 = 1 ... 5
(5 - 11) / 11 = 0 ... -6
A / B = C ... D 在數學上除法餘數會用右式表示,
A ≡ D mod B
只要證明
(1 x 3 x 5 x ..... x 2001) + (2 x 4 x 6 x ..... x 2002) ≡ 0 mod 2003,就可解出來,
(1 x 3 x 5 x ..... x 2001) + (2 x 4 x 6 x ..... x 2002)
≡ [1 x 3 x 5 x ..... x 2001 + (2-2003) x (4-2003) x (6-2003) x ..... x (2002-2003)] mod 2003
≡ [1 x 3 x 5 x ..... x 2001 + (-2001) x (-1999) x (-1997) x ..... x (-1)] mod 2003
≡ [1 x 3 x 5 x ..... x 2001 - 2001 x 1999 x 1997 x ..... x 1] mod 2003
≡ 0 mod 2003 整除
在求解題目時,與網友赤子西瓜同時發現如下規則,