想了很多種方法,應該都是等價的。下面是效率最高的一個。※引理:兩切線的夾角與所夾劣弧度數互補所求=∠BAC-∠EAC=(180°-BC弧)-(50°/2)=[180°-(EC弧+20°)]-25°=[180°-(180°-∠EDC+20°)]-25°=[180°-(180°-50°+20°)]-25°爽快地把180度消掉,計算得5°。
正解,謝謝提供這麼棒的解法,有興趣的朋友可以留言其它解法。
為什麼∠EAC=50°/2
DE=DA,是故∠AED=∠EAD由外角定理,50°= ∠EDC = ∠AED + ∠EAD = 2∠AED = 2∠EAD = 2 x 25°
謝謝西瓜幫忙解答。
想了很多種方法,應該都是等價的。下面是效率最高的一個。
回覆刪除※引理:兩切線的夾角與所夾劣弧度數互補
所求=∠BAC-∠EAC
=(180°-BC弧)-(50°/2)
=[180°-(EC弧+20°)]-25°
=[180°-(180°-∠EDC+20°)]-25°
=[180°-(180°-50°+20°)]-25°
爽快地把180度消掉,計算得5°。
正解,謝謝提供這麼棒的解法,有興趣的朋友可以留言其它解法。
刪除為什麼∠EAC=50°/2
回覆刪除DE=DA,是故∠AED=∠EAD
刪除由外角定理,50°= ∠EDC = ∠AED + ∠EAD = 2∠AED = 2∠EAD = 2 x 25°
謝謝西瓜幫忙解答。
刪除